(Positive) Design of RiboNucleic Acids

Centre National de la Recherche Scientifique (CNRS)

- LIX, Ecole Polytechnique
${ }^{\dagger}$ AMIBio team, Inria Saclay
http://goo.gl/mejsFh

Yann Ponty

PhD in Computer Science, Université Paris-Sud (France)

- CNRS research scientist
- Faculty at LIX, Computer Science department of Ecole Polytechnique

■ Group leader - AMIBio team (Ecole Polytechnique and Inria Saclay)

- Postdoc experience in RNA Computational Biology (Boston, Paris) and Discrete Mathematics (Paris)
■ Extended sabbatical at Simon Fraser University (Vancouver, Canada)

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology

$\{A, C, G, U\}^{*}$

Proteins
$\underbrace{\{\text { Ala, Arg }, \ldots, \text { Val }\}^{\star}}$
(A)-(U)-(G)-(U)-(U)-(C)-(C)-(U) = =

Fundamental dogma of molecular biology

(A)-(U)-(G)-(I)-(U)-(A)-(C)-(C)-(A)- = =

THE MACHINE (enzymes)

Proteins

$\underbrace{\{\text { Ala, } \operatorname{Arg}, \ldots, \text { Val }\}^{*}}$

Fundamental dogma of molecular biology

(A)-(1)-(a)-(a)-(1)-(1)-(A)-(C)-(C)-(A)-(1)- - -

Fundamental dogma of molecular biology

Fundamental dogma of molecular biology (v2.0)

Fundamental dogma of molecular biology

Proteins

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.

R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA world: Resolving the chicken vs egg paradox at the origin of life...

A gene big enough to specify an enzyme would be too big to replicate accurately without the aid of an enzyme of the very kind that it is trying to specify. So the system apparently cannot get started.
[$\cdot \cdots$] This is the RNA World. To see how plausible it is, we need to look at why proteins are good at being enzymes but bad at being replicators; at why DNA is good at replicating but bad at being an enzyme; and finally why RNA might just be good enough at both roles to break out of the Catch-22.
R. Dawkins. The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

RNA folding

RNA are single－stranded and fold on themselves，establishing complex 3D structures that are essential to their function（s）．

RNA structures are stabilized by base－pairs，each mediated by hydrogen bonds．

U／A

Canonical base－pairs
$1^{\text {st }}$ International Computational Biology workshop

RNA Design

RNA $=$ Linear Polymer $=$ Sequence in $\{A, C, G, U\}^{\star}$

UUAGGCGGCCACAGC
GGUGGGGUUGCCUCC CGUACCCAUCCCGAA CACGGAAGAUAAGCC CACCAGCGUUCCGGG GAGUACUGGAGUGCG CGAGCCUCUGGGAAA CCCGGUUCGCCGCCA

CC
Primary Structure

Secondary Structure

Structure Tertiaire
5s rRNA (PDBID: 1K73:B)
$1^{\text {st }}$ International Computational Biology workshop

Evolution of RNAs

Homologous genes = Functionally equivalent, within or across organisms Usually well-captured by sequence similarity in proteins, binding sites...

Problem: Many classes of non-(protein) coding RNAs (ncRNAs) poorly conserved at the sequence level but adopt a conserved structure!

RFAM Bacterial RNAse-P class B Alignment

RNA Design

RNA $=$ Linear Polymer $=$ Sequence in $\{A, C, G, U\}^{\star}$

RNA Design

RNA $=$ Linear Polymer $=$ Sequence in $\{A, C, G, U\}^{\star}$

Primary Structure Secondary Structure Structure Tertiaire
5s rRNA (PDBID: 1K73:B)

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters. including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences

Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignmentsTo fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters

- To perform controlled experiments

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Why we design RNAs

- To create building blocks for synthetic systems Rationally-designed RNAs increase orthogonality
- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences Incomplete covariance models hindered by limited training sets Design can be used to generalize existing alignments
- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Why we design RNAs

- To create building blocks for synthetic systems

Rationally-designed RNAs increase orthogonality

- To assess the significance of observed phenomenon Random models should include every established characters...
... including adoption of a single structure
- To test/push our understanding of how RNA folds Misfolding RNAs reveal gaps in our energy models and descriptors for the conformational spaces
- To help search for homologous sequences

Incomplete covariance models hindered by limited training sets
Design can be used to generalize existing alignments

- To fuel RNA-based therapeutics Sequence-based (siRNA, synthetic genes), but structure matters
- To perform controlled experiments

Controlled experiments through RNA design

Motivation: Quantifying the impact of structure S on efficacy of a single Exon Splicing Enhancers (ESE):

■ Presence of ESE motif E;
■ Different structures $S_{1}, S_{2} \ldots$;
■ Avoid library of (~ 1500 !) documented ESEs motifs.

Objectives. Design RNA which:
(1) Folds into a prescribed structure;
(2) Features/avoids motifs.
(3) Control GC\%, Boltz. prob.....

Structural context of ESE motif in
 transcript was shown to affect its functionality. [Liu et al, FEBS Lett. 2010]

Design objectives

Positive structural design
Optimize affinity of designs towards target structure(s)
Examples: Most stable sequence for given fold. . .
Negative structural design
Limit affinity of designs towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...
Additional constraints:

- Forbid motif list to appear anywhere in design
- Force motif list to appear each at least once
- Limit available alternatives at certain positions

■ Control overall composition (GC-content)

Outline

■ I. Single Structure Design (IncaRNAtion)

■ II. Constrained Design using Formal Languages

■ III. Multiple Structures

I. Inverse Folding

Designing a given structure

RNA sequence and structure(s)

RNA $=$ Linear Polymer $=$ Sequence in $\{A, C, G, U\}^{\star}$

Primary Structure
Secondary Structure
Tertiary Structure

Crossing interactions

Excluded from the secondary structure:

- Non-canonical base-pairs:

Any base-pair other than \{(A-U), (C-G), (G-U)\}
OR interacting in a non-standard way (WC/WC-Cis) [Leontis Westhof, RNA 2001].

Canonical CG base-pair (WC/WC-Cis)

Non-canonical base-pair (Sugar/WC-Trans)

- (Pseudo?)knots: Crossing sets of nested stable base-pairs

Group I Ribozyme (PDBID: 1Y0Q:A)

Crossing interactions

Excluded from the secondary structure:

- Non-canonical base-pairs:

Any base-pair other than \{(A-U), (C-G), (G-U)\}
OR interacting in a non-standard way (WC/WC-Cis) [Leontis Westhof, RNA 2001].

Canonical CG base-pair (WC/WC-Cis) Non-canonical base-pair (Sugar/WC-Trans)

■ (Pseudo?)knots: Crossing sets of nested stable base-pairs

Group I Ribozyme (PDBID: 1Y0Q:A)

Crossing interactions

Excluded from the secondary structure:
■ Non-canonical base-pairs:

Crossing interactions do exist!

Example: Group II Intron (PDB ID: 3IGI)
But are hard to predict [Lyngsoe-ICALP'04]
[Sheikh Backofen Ponty, CPM'12]

- (Ps

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)

- 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)
- 2010s-???? Embracing the kinetics of RNA folding

> mRNA half-life: ~7h
> (Mouse [Sharova2009])

$$
T \rightarrow \infty
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [Sharova2009])

$$
T \rightarrow \infty
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

$$
T=0 \mathrm{~h}
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [Sharova2009])

$$
T=1 \mathrm{~h}
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [Sharova2009])

$$
T=2 \mathrm{~h}
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [Sharova2009])

$$
T=5 \mathrm{~h}
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h (Mouse [Sharova2009])

$$
T=10 \mathrm{~h}
$$

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: ~7h
(Mouse [Sharova2009])

$$
T \rightarrow \infty
$$

$1^{\text {st }}$ International Computational Biology workshop

Thermodynamics vs Kinetics

Paradigms for RNA structure prediction

■ 1978-1990s Most probable structure = Minimal Free-Energy (MFE)
■ 1990s-2010s Functional structure(s) = Boltzmann ensemble (partition function)

- 2010s-???? Embracing the kinetics of RNA folding

mRNA half-life: $\sim 7 h$ (Mouse [Sharova2009])

$$
T=10 \mathrm{~h}
$$

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w

- Motifs: Sequence/structure features (e.g. Base-pairs,
- Energy model:

Motif \rightarrow Free-energy contribution $\triangle(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

$$
E_{S}=2 \cdot \Delta\binom{\text { © }}{\text { © }}+4 \cdot \Delta\binom{\text { © }}{\text { © }}+2 \cdot \Delta\binom{\text { © }}{\text { © }}
$$

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

■ RNA structure S : Non-crossing base-pairs for positions in sequence w
■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Problem statement

- RNA structure S: Non-crossing base-pairs for positions in sequence w

■ Motifs: Sequence/structure features (e.g. Base-pairs, Stacks, Loops...)

- Energy model:

Motif \rightarrow Free-energy contribution $\Delta(\cdot) \in \mathbb{R}^{-} \cup\{+\infty\}$
Free-Energy $E_{w}(S)$: Sum over (independently contributing) motifs in S

Definition (MFE-Predict(E) problem)

Input: RNA sequence $w \in\{A, C, G, U\}^{*}$
Output: Secondary struct. S^{*} with Minimal Free-Energy (MFE) $E_{w}\left(S^{*}\right)$

Problem solved exactly in $O\left(n^{3}\right)$ time.
[Nussinov Jacobson, PNAS 1980] [Zuker Stiegler, NAR 1981].
$1^{\text {st }}$ International Computational Biology workshop

Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])

Max \#base-pairs/min energy structure computed in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}$: Free-energy contribution of base-pair $(i, k) . \quad\left(-1 /+\infty\right.$ or $\left.\Delta \mathrm{G}\left(s_{i} \stackrel{?}{\equiv} s_{k}\right)\right)$
$\boldsymbol{N}_{i, j}$: Max \#base-pairs over interval [i,j]

$$
\begin{aligned}
& \boldsymbol{N}_{i, t}=0, \quad \forall t \in[i, i+\theta] \\
& \boldsymbol{N}_{i, j}=\min \left\{\begin{array}{cr}
\boldsymbol{N}_{i+1, j} & \{i \text { unpaired }\} \\
\min _{k=i+\theta+1} E_{i, k}+\boldsymbol{N}_{i+1, k-1}+\boldsymbol{N}_{k+1, j} & \{i \text { paired to } k\}
\end{array}\right.
\end{aligned}
$$

Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])

Max \#base-pairs/min energy structure computed in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}:$ Free-energy contribution of base-pair (i, k). $\left(-1 /+\infty\right.$ or $\left.\Delta \mathrm{G}\left(s_{i} \stackrel{?}{=} s_{k}\right)\right)$
$C_{i, j}$: Number of secondary structures compatible with interval $[i, j]$

$$
\begin{aligned}
& \boldsymbol{C}_{i, t}=1, \quad \forall t \in[i, i+\theta] \\
& \boldsymbol{C}_{i, j}=\sum\left\{\begin{array}{cr}
\boldsymbol{C}_{i+1, j} & \text { \{i unpaired }\} \\
\sum_{k=i+\theta+1}^{j} \mathbb{1}_{\text {comp. }(i, k)} \times \boldsymbol{C}_{i+1, k-1} \times \boldsymbol{C}_{k+1, j} & \text { \{i paired to } k\}
\end{array}\right.
\end{aligned}
$$

Dynamic programming (DP) for RNA folding

Theorem ([Nussinov and Jacobson(1980)])

Max \#base-pairs/min energy structure computed in $\mathcal{O}\left(n^{3}\right) / \mathcal{O}\left(n^{2}\right)$ time/memory

$E_{i, k}:$ Free-energy contribution of base-pair (i, k).

$$
\left(-1 /+\infty \text { or } \Delta \mathrm{G}\left(s_{i} \stackrel{?}{\equiv} s_{k}\right)\right)
$$

$\mathcal{Z}_{i, j}=\sum_{\text {with } w_{[i, j]}}^{s_{\text {comp. }}} e^{\frac{-E_{w}(S)}{R T}}=$ Partition function for compatible structs within $[i, j]$
$\mathcal{Z}_{i, t}=1, \quad \forall t \in[i, i+\theta]$
$\mathcal{Z}_{i, j}=\sum\left\{\begin{array}{cr}\left.\frac{\mathcal{Z}_{i+1, j}}{} \quad \text { \{i unpaired }\right\} \\ \sum_{k=i+\theta+1}^{j} e^{\frac{-E_{i, k}}{R T}} \times \mathcal{Z}_{i+1, k-1} \times \mathcal{Z}_{k+1, j} & \{i \text { paired to } k\}\end{array}\right.$

Dynamic programming (DP) for RNA folding

Many extensions:

■ Nearest-neighbor/Turner energy model

- Comparative folding
- Equilibrium base-pairing probabilities
- Moments of additive features
[Miklos2005,Ponty2011]
- Δ kcal. $_{\text {mol }}{ }^{-1}$ suboptimal structures of MFE
- Basic crossing structures
[Wuchty1999]
[Rivas1999]. . .
- Exact sampling in Boltzmann distr.
- Moments of additive features
- Maximum expected accuracy structure
- Distance-classified partitioning of Boltzmann ens.

Made possible by:
■ Completeness/Unambiguity of decomposition
\exists energy-preserving bijection between derivations of DP scheme and search space

- Objective function additive with respect to DP scheme

RNA inverse folding

RNA $=$ Linear Polymer $=$ Sequence in $\{A, C, G, U\}^{\star}$

Primary Structure Secondary Structure Structure Tertiaire
5s rRNA (PDBID: 1K73:B)

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $S+$ Energy distance $\Delta>0$. Output: RNA sequence $w \in \Sigma^{\star}$ such that:

$$
\forall S^{\prime} \in \mathcal{S}|w| \backslash\{S\}: E_{w, S^{\prime}} \geq E w, S+\Delta
$$

or \varnothing if no such sequence exists.

Difficult problem: No obvious DP decomposition
■ Existing algorithms: Heuristics or Exponential-time
■ Complexity of problem unknown (despite [Schnall Levin et al, ICML’08]) Reason: Non locality, no theoretical frameworks, too many parameters...

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $S+$ Energy distance $\Delta>0$. Output: RNA sequence $w \in \Sigma^{\star}$ such that:

$$
\forall S^{\prime} \in \mathcal{S}|w| \backslash\{S\}: E_{w, S^{\prime}} \geq E w, S+\Delta
$$

or \varnothing if no such sequence exists.

Example:

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $S+$ Energy distance $\Delta>0$. Output: RNA sequence $w \in \Sigma^{\star}$ such that:

$$
\forall S^{\prime} \in \mathcal{S}|w| \backslash\{S\}: E_{w, S^{\prime}} \geq E w, S+\Delta
$$

or \varnothing if no such sequence exists.

Example:

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $S+$ Energy distance $\Delta>0$. Output: RNA sequence $w \in \Sigma^{\star}$ such that:

$$
\forall S^{\prime} \in \mathcal{S}|w| \backslash\{S\}: E_{w, S^{\prime}} \geq E w, S+\Delta
$$

or \varnothing if no such sequence exists.

Example:

RNA Inverse Folding

Definition (INVERSE-FOLDING(E) problem)

Input: Secondary structure $S+$ Energy distance $\Delta>0$. Output: RNA sequence $w \in \Sigma^{\star}$ such that:

$$
\forall S^{\prime} \in \mathcal{S}|w| \backslash\{S\}: E_{w, S^{\prime}} \geq E w, S+\Delta
$$

or \varnothing if no such sequence exists.

Example:

Existing approaches for negative design

Typical issues:

■ Naive initialization strategies
■ Poor coverage of sequence space:
Local search remain confined near initial sequence
■ GC-rich produced sequences
\Rightarrow Global sampling [Levin et al, NAR 12]

Existing approaches for negative design

Based on local search...
RNAInverse - TBI Vienna
Info-RNA - Backofen@Freiburg
RNA-SSD - Condon@UBC
NUPack - Pierce@Caltech
... bio-inspired algorithms. . .

- RNAFBinv - Barash@Ben Gurion

■ FRNAKenstein - Hein@Oxford

- AntaRNA - Backofen@Freiburg

■ ERD - Ganjtabesh@Tehran
...exact approaches...
■ RNAIFold - Clote@Boston College
■ CO4 - Will@Leipzig

Typical issues:

■ Naive initialization strategies

- Poor coverage of sequence space:

Local search remain confined near initial sequence
■ GC-rich produced sequences
\Rightarrow Global sampling [Levin et al, NAR 12]

The case for a control of GC-content

High GC-content suspected to induce kinetic traps

Global sampling [Levin et al, NAR 12]

Target structure S

■ Boltzmann distribution based on affinity towards S
■ Random generation from Boltzmann Distribution
■ Fold sampled sequences and compare to target
Boltzmann factor:

$$
\mathcal{B}_{w}(S):=e^{\frac{-E_{w}(S)}{R T}}
$$

Pseudo-Partition Function:

$$
\mathcal{Z}(S)=\sum_{w \in \Sigma^{*}} \mathcal{B}_{w}(S)
$$

Boltzmann probability:

$$
p(s):=\frac{\mathcal{B}_{w}(S)}{\mathcal{Z}}
$$

$1^{\text {st }}$ International Computational Biology workshop

IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space Structure fixed

IncaRNAtion [Reinharz et al, Bioinformatics 2013]

IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space Structure fixed

IncaRNAtion [Reinharz et al, Bioinformatics 2013]

Explore sequence space Structure fixed

IncaRNAtion [Reinharz et al, Bioinformatics 2013]

"Global" Stochastic Backtrack

Sequence:

"Global" Stochastic Backtrack

Sequence:
nt

"Global" Stochastic Backtrack

Sequence:

"Global" Stochastic Backtrack

Sequence:

"Global" Stochastic Backtrack

Sequence:

"Global" Stochastic Backtrack

Sequence:

(O)B) $1^{\text {st }}$ Inteweighitoriati Cont| ${ }^{\text {S }}$ utational Biology workshop

"Global" Stochastic Backtrack

Sequence:

GC-content bias

Weighted DP Recursions

Incarnation NT distribution: Bissection scheme

Target 15\% GC

[Waldispühl and Ponty, RECOMB, 2011]

Incarnation NT distribution: Bissection scheme

Target 15\% GC

[Waldispühl and Ponty, RECOMB, 2011]

Incarnation NT distribution: Bissection scheme

Target 15\% GC

[Waldispühl and Ponty, RECOMB, 2011]

Incarnation NT distribution: Bissection scheme

Target 15\% GC

[Waldispühl and Ponty, RECOMB, 2011]

Incarnation NT distribution: Bissection scheme

Target 15\% GC

[Waldispühl and Ponty, RECOMB, 2011]

Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...

- Strong empirical correlation affinity/success of design [Levin et al, NAR 2012]
- Linear time-complexity [Reinharz Ponty Waldispühl, ISMB/ECCB'13]
- Composition control [Bodini Ponty, AofA'10] [Reinharz et al, ISMB/ECGB:43]
- Complementary with local search approaches [Reinharzetat-ISMIBECCB'13]
(OB) $1^{\text {st }}$ International Computational Biology workshop

Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...

- Strong empirical correlation affinity/success of design [Levin et al, NAR 2012]
- Linear time-complexity [Reinharz Ponty Waldispühl, ISMB/ECCB'13]
- Composition control [Bodini Ponty, AofA'10] [Reinharz et al, ISMB/ECGB:i3]
- Complementary with local search approaches [Reinharzeti-ISNBECCB'13]
(C)B $1^{\text {st }}$ International Computational Biology workshop

Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...

- Strong empirical correlation affinity/success of design [Levin et al, NAR 2012]
- Linear time-complexity [Reinharz Ponty Waldispühl, ISMB/ECCB'13]
- Composition control [Bodini Ponty, AofA'10] [Reinharz et al, ISMB/ECGB:i3]
- Complementary with local search approaches [Reinharzeti-ISNBECCB'13]
(C)B $1^{\text {st }}$ International Computational Biology workshop

Limits of the approach

Heuristic: Strong affinity is neither sufficient, nor necessary, but ...
■ Strong empirical correlation affinity/success of design [Levin et al, NAR 2012]
■ Linear time-complexity [Reinharz Ponty Waldispühl, ISMB/ECCB'13]
■ Composition control [Bodini Ponty, AofA'10] [Reinharz et al, ISMB/ECCB'13]
■ Complementary with local search approaches [Reinharz et al, ISMB/ECCB'13]

Local vs Global vs "Glocal"

Local vs Global vs "Glocal"

Local vs Global vs "Glocal"

The success of glocal strategies

> | $\cdots \rightarrow$ | RNAensign | $x \cdot *$ | RNAensigns-S | $\bullet \rightarrow$ | RNAinverse Fp |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\nabla \cdot \nabla$ | RNAensign- P | \square | RNAinverse Fm | $\Delta \Delta \Delta$ | NUPACK |

Sampling + Optimize creates highly probable design sequences

II. Constrained design

Avoiding/forcing motifs

Existing approaches for negative design

```
Based on local search. . .
    ■ RNAInverse - TBI Vienna
    - Info-RNA -
    Backofen@Freiburg
    ■ RNA-SSD - Condon@UBC
    ■ NUPack - Pierce@Caltech
```

... bio-inspired algorithms. . .
■ RNAFBinv - Barash@Ben Gurion
■ FRNAKenstein - Hein@Oxford

- AntaRNA - Backofen@Freiburg
... exact approaches. . .
■ RNAIFold - Clote@Boston College
■ CO4 - Will@Leipzig

Few algorithms support avoided/mandatory motifs...
... none guarantees reasonable runtime.

Typical reasons:

- Deep local minima (Rugged landscape)
- Mandatory motifs \Rightarrow Late deadends (Branch and Bound)
- Forbidden motifs \Rightarrow Search space disconnection (Local Seareh)

Existing approaches for negative design

Based on local search. . .
■ RNAInverse - TBI Vienna

- Info-RNA -

Backofen@Freiburg
■ RNA-SSD - Condon@UBC
■ NUPack - Pierce@Caltech
... bio-inspired algorithms. . .

- RNAFBinv - Barash@Ben Gurion

■ FRNAKenstein - Hein@Oxford

- AntaRNA - Backofen@Freiburg
... exact approaches. . .
■ RNAIFold - Clote@Boston College
■ CO4 - Will@Leipzig

Few algorithms support avoided/mandatory motifs. . .
...none guarantees reasonable runtime.

Typical reasons:
■ Deep local minima (Rugged landscape)
■ Mandatory motifs \Rightarrow Late deadends (Branch and Bound)
■ Forbidden motifs \Rightarrow Search space disconnection (Local Search)

Problem with local approaches: An example

Simplified vocabulary $\{\mathrm{A}, \mathrm{U}\}$

Problem with local approaches: An example

Simplified vocabulary $\{\mathrm{A}, \mathrm{U}\}+$ Forbidden motifs $\mathcal{F}=\{\mathrm{AU}, \mathrm{UA}\}$

$\Rightarrow \mathcal{F}$ may disconnect search space (holds for any move set!)

Idea

Use formal language constructs to constrain global sampling

Forced motifs Avoided motifs

\rightarrow Regular language $\mathcal{L}_{C} \in \operatorname{Reg}$

Structure compatibility

+ Positional constraints \rightarrow Weighted Context-Free Lang $\mathcal{L}_{S} \in \mathrm{CFL}$ + Energy Model

Folklore theorem (constructive): Reg $\cap(W) C F L \subseteq(W) C F L$
Build weighted context-free grammar \mathcal{G} for $\mathcal{L}_{C} \cap \mathcal{L}_{S}$ + Random generation

Idea

Use formal language constructs to constrain global sampling

Forced motifs Avoided motifs
\rightarrow Regular language $\mathcal{L}_{C} \in \operatorname{Reg}$

Structure compatibility

+ Positional constraints \rightarrow Weighted Context-Free Lang $\mathcal{L}_{S} \in \mathrm{CFL}$
+ Energy Model

Build weighted context-free grammar \mathcal{G} for $\mathcal{L}_{C} \cap \mathcal{L}_{S}$ + Random generation

Idea

Use formal language constructs to constrain global sampling

Forced motifs Avoided motifs
\rightarrow Regular language $\mathcal{L}_{C} \in \operatorname{Reg}$

Structure compatibility

+ Positional constraints \rightarrow Weighted Context-Free Lang $\mathcal{L}_{S} \in \mathrm{CFL}$
+ Energy Model
Folklore theorem (constructive): Reg $\cap(W) C F L \subseteq(W) C F L$
Build weighted context-free grammar \mathcal{G} for $\mathcal{L}_{C} \cap \mathcal{L}_{S}$ + Random generation

Idea

Use formal language constructs to constrain global sampling

Forced motifs Avoided motifs
\rightarrow Regular language $\mathcal{L}_{C} \in \operatorname{Reg}$

Structure compatibility

+ Positional constraints \rightarrow Weighted Context-Free Lang $\mathcal{L}_{S} \in$ CFL
+ Energy Model
Folklore theorem (constructive): Reg $\cap(W)$ CFL $\subseteq(W)$ CFL
Build weighted context-free grammar \mathcal{G} for $\mathcal{L}_{C} \cap \mathcal{L}_{S}$
+ Random generation
\Rightarrow Global sampling under constraints

Building the Finite State Automaton

To force multiple words, keep track of generated words:

- Create disjunctive automata for each $\mathcal{M}^{\prime} \subseteq \mathcal{M}$
- Reroute accepting states - Accepting state = no forced word remaining (ε
- Forbidden words can be added to sub-automata \#States:

$$
O\left(2^{|\mathcal{M}|} \cdot\left(\sum_{i}\left|f_{i}\right|+\sum_{j}\left|m_{j}\right|\right)\right)
$$

Example: $\mathcal{M}=\{$ AGC, GG $\}$

Building the Finite State Automaton

To force multiple words, keep track of generated words:

- Create disjunctive automata for each $\mathcal{M}^{\prime} \subseteq \mathcal{M}$
■ Reroute accepting states
- Accepting state = no forced word remaining (ε in $\mathcal{A}_{\varnothing}$)
- Forbidden words can be added to sub-automata

\#States:

$O\left(2^{|\mathcal{M}|} \cdot\left(\sum_{i}\left|f_{i}\right|+\sum_{j}\left|m_{j}\right|\right)\right)$

Example: $\mathcal{M}=\{$ AGC, GG$\}$

Building the Finite State Automaton

To force multiple words, keep
track of generated words:

- Create disjunctive automata for each $\mathcal{M}^{\prime} \subseteq \mathcal{M}$
■ Reroute accepting states
- Accepting state = no forced word remaining (ε in $\mathcal{A}_{\varnothing}$)
■ Forbidden words can be added to sub-automata
\#States:
$O\left(2^{|\mathcal{M}|} \cdot\left(\sum_{i}\left|f_{i}\right|+\sum_{j}\left|m_{j}\right|\right)\right)$

Example:

$$
\mathcal{M}=\{\mathrm{AGC}, \mathrm{GG}\} ; \mathcal{F}=\{\mathrm{AA}\}
$$

Building the grammar

Input: Secondary Structure $S+$ Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

Building the grammar

Input: Secondary Structure $S+$ Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

Building the grammar

Input: Secondary Structure $S+$ Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

$$
\begin{array}{llll}
S_{1} \rightarrow . S_{2} & S_{2} \rightarrow\left(S_{3}\right) & S_{3} \rightarrow\left(S_{4}\right) S_{8} & S_{4} \rightarrow\left(S_{5}\right) \\
S_{5} \rightarrow . & S_{8} \rightarrow\left(S_{9}\right) & S_{9} \rightarrow . S_{10} & S_{10} \rightarrow .
\end{array}
$$

Building the grammar

Input: Secondary Structure $S+$ Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

$$
\begin{aligned}
V_{1} & \rightarrow \mathrm{~A} V_{2}\left|\mathrm{C} V_{2}\right| \mathrm{G} V_{2} \mid \mathrm{U} V_{2} \\
V_{2} & \rightarrow \mathrm{~A} V_{3} \mathrm{U}\left|\mathrm{C} V_{3} \mathrm{G}\right| \mathrm{G} V_{3} \mathrm{C}\left|\mathrm{G} V_{3} \mathrm{U}\right| \mathrm{U} V_{3} \mathrm{~A} \mid \mathrm{U} V_{3} \mathrm{G} \\
V_{3} & \rightarrow \mathrm{~A} V_{4} \cup V_{8}\left|\mathrm{C} V_{4} \mathrm{G} V_{8}\right| \mathrm{G} V_{4} \mathrm{C} V_{8}\left|\mathrm{G} V_{4} U V_{8}\right| \mathrm{U} V_{4} \mathrm{~A} V_{8} \mid U V_{4} \mathrm{G} V_{8} \\
V_{4} & \rightarrow \mathrm{~A} V_{5} \mathrm{U}\left|\mathrm{C} V_{5} \mathrm{G}\right| \mathrm{G} V_{5} \mathrm{C}\left|\mathrm{G} V_{5} U\right| \mathrm{U} V_{5} \mathrm{~A} \mid \mathrm{U} V_{5} \mathrm{G} \\
V_{5} & \rightarrow \mathrm{~A}|\mathrm{C}| \mathrm{G} \mid \mathrm{U} \\
V_{8} & \rightarrow \mathrm{~A} V_{9} \mathrm{U}\left|\mathrm{C} V_{9} \mathrm{G}\right| \mathrm{G} V_{9} \mathrm{C}\left|\mathrm{G} V_{9} U\right| \mathrm{U} V_{9} \mathrm{~A} \mid \mathrm{U} V_{9} \mathrm{G} \\
V_{9} & \rightarrow \mathrm{~A} V_{10}\left|\mathrm{C} V_{10}\right| \mathrm{G} V_{10} \mid \mathrm{U} V_{10} \\
V_{10} & \rightarrow \mathrm{~A}|\mathrm{C}| \mathrm{G} \mid \mathrm{U}
\end{aligned}
$$

Building the grammar

Input: Secondary Structure $S+$ Positional constraints
A Create Parse Tree for secondary structure
B Translate Parse Tree into single-word grammar
C Expand grammar to instantiate compatible base/base-pairs
D Restrict to bases/base-pairs allowed at each position

$$
\begin{aligned}
& V_{1} \rightarrow \mathrm{~A} V_{2}\left|\mathrm{C} V_{2}\right| \mathrm{G} V_{2} \mid \mathrm{U} V_{2} \\
& V_{2} \rightarrow \mathrm{~A} V_{3} U\left|C V_{3} G\right| G V_{3} E\left|G V_{3} U\right| U V_{3} \mathrm{~A} \mid U V_{3} G \\
& V_{3} \rightarrow \mathrm{~A} V_{4} \cup V_{8}\left|C V_{4} G V_{8}\right| G V_{4} C V_{8}\left|G V_{4} \cup V_{8}\right| \cup V_{4} \mathrm{~A} V_{8} \mid \cup V_{4} G V_{8} \\
& V_{4} \rightarrow \mathrm{~A} V_{5} \mathrm{U}\left|\mathrm{C} V_{5} \mathrm{G}\right| \mathrm{G} V_{5} \mathrm{G}\left|\mathrm{G} V_{5} U\right| U V_{5} \mathrm{~A} \mid U V_{5} \mathrm{G} \\
& V_{5} \rightarrow \mathrm{~A}|\mathrm{C}| \mathrm{G} \mid \mathrm{U} \\
& V_{8} \rightarrow \mathrm{~A} V_{9} \mathrm{U}\left|\mathrm{C}_{9} \mathrm{G}\right| \mathrm{G} V_{9} \mathrm{G}\left|\mathrm{G} V_{9} \mathrm{C}\right| \mathrm{U} V_{9} \mathrm{~A} \mid \text { UVGG } \\
& V_{9} \rightarrow \mathrm{~A} V_{10}\left|\mathrm{C} V_{10}\right| \mathrm{G} V_{10} \mid \cup V_{10} \\
& V_{10} \rightarrow \mathrm{~A}|\mathrm{C}| \mathrm{G} \mid \mathrm{U}
\end{aligned}
$$

Random generation

Combine CFG and aut. \rightarrow CFG (Multiplying \#Rules by $|Q|^{3}$)
GenRGenS [Ponty Termier Denise, Bioinformatics 2006]:

- Precomputes \#words for each non-terminal
- Random Generation w.r.t. weighted distribution

Energy models:
■ Uniform distribution
■ Nussinov energy model
■ Stacking-pairs model (Turner 2004)
Based on refined, yet similar, grammar
Overall complexity: $|S| \cdot 2^{3|\mathcal{M}|} \cdot\left(\sum_{i}\left|f_{i}\right|+\sum_{j}\left|m_{j}\right|\right)^{3}$
■ Linear on $|S|$
■ Exponential on |M|, but NP-Hard problem

III. Positive design for multiple structures

Motivation: Kinetics and riboswitches

(O)B $1^{\text {st }}$ International Computational Biology workshop

Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure Or simply ensure their compatibility with one or several structures Examples: Most stable sequence for given fold. . .

Negative structural design
Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...

Additional constraints:
■ Forbid motif list to appear anywhere in design
■ Force motif list to appear each at least once

- Limit available alternatives at certain positions
- Control overall composition (GC-content)

Design objectives

Positive structural design

Optimize affinity of designed sequences towards target structure Or simply ensure their compatibility with one or several structures Examples: Most stable sequence for given fold...

Negative structural design

Limit affinity of designed sequences towards alternative structures
Examples: Lowest free-energy, High Boltzmann probability/Low entropy...

Additional constraints:

- Forbid motif list to appear anywhere in design

■ Force motif list to appear each at least once

- Limit available alternatives at certain positions
- Control overall composition (GC-content)

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{~L}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{G} \stackrel{\mathrm{I}}{\mathrm{~T}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{I}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{A} \prod_{\mathrm{G}}^{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{~T}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?

Counting compatible RNAs: Watson-Crick + Single structure

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{~T}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: 4\#BPs $\times 4^{\text {\#Unpaired }} \rightarrow 268435456$
(OB) $1^{\text {st }}$ International Computational Biology workshop

Counting compatible RNAs: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible RNAs: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{H}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible RNAs: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph: Cycles + Paths i$\quad \mathrm{m} \quad \mathrm{n}$		
$\mathrm{g}=\mathrm{e}=\mathrm{a}=\mathrm{u}$	h	$\mathrm{j}-\mathrm{q}$
k	p	$\mathrm{d}=\mathrm{b}=\mathrm{t}$
$\mathrm{f}-\mathrm{l}-\mathrm{o}-\mathrm{v}$	$\mathrm{c}-\mathrm{s}$	

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible RNAs: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{+} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

Counting compatible RNAs: Watson-Crick + Two structures

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{~T}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph: Cycles + Paths i$\quad \mathrm{m} \quad \mathrm{n}$		
$\mathrm{g}=\mathrm{e}=\mathrm{a}=\mathrm{u}$	h	$\mathrm{j}=\mathrm{q}$
$\mathrm{k}=\mathrm{p}$	$\mathrm{d}=\mathrm{b}=\mathrm{t}$	
$\mathrm{f}=\mathrm{l}=\mathrm{o}=\mathrm{v}$	$\mathrm{c}=\mathrm{s}$	

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (both base-pairs and dependency graphs bipartite)

$$
4^{\# C C s} \rightarrow 65536
$$

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\mathrm{A} \stackrel{\mathrm{I}}{\mathrm{I}} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer:

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\mathrm{G} \stackrel{\mathrm{I}}{\square} \mathrm{U}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; \qquad

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\begin{gathered}
\mathrm{A} \stackrel{\mathrm{I}}{\leftrightarrows} \mathrm{U} \\
\mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{gathered}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

$\underset{r}{f-I-0-v}$
Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; \square

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\begin{aligned}
& A \stackrel{U}{\Perp} \mathrm{U} \\
& \mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{aligned}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$;

Bipartite

Counting compatible RNAs: Watson-Crick + > 2 structs

$$
\begin{aligned}
& A \stackrel{U}{\Perp} \mathrm{U} \\
& \mathrm{G} \stackrel{\mathrm{C}}{\square}
\end{aligned}
$$

Compatible Base Pairs = Only Watson-Crick base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite $\rightarrow 4^{\# C C s}=64$

Counting compatible RNAs: WC/Wobble + Single struct.

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: 4\#Unpaired $\times 6$ \#BPs $\rightarrow 6879707.136$
$1^{\text {st }}$ International Computational Biology workshop

Counting compatible RNAs: WC/Wobble + Single struct.

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: 4 \#Unpaired $\times 6^{\# B P s} \rightarrow 6879707136$

Counting compatible RNAs: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph: Cycles + Paths	
i m n	r
	$\begin{array}{r} j-a \\ -b-t \end{array}$
$\mathrm{f}-\mathrm{l}-\mathrm{o}-\mathrm{v}$	$\mathrm{c}-\mathrm{s}$

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible RNAs: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible RNAs: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible RNAs: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

Counting compatible RNAs: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

$$
\begin{aligned}
& \# \operatorname{Designs}(G)=\prod_{c \in C C(G)} \# \text { Designs }(C C) \\
& \left(\text { @B) } 1^{\text {t }}\right. \text { International Computational Biology workshop }
\end{aligned}
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where $\mathcal{F}_{n}: n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where $\mathcal{F}_{n}: n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where $\mathcal{F}_{n}: n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
m_{\bullet}(n)=m_{\circ}(n-1)
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where $\mathcal{F}_{n}: n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\bullet}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} : $n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $\mathrm{A} \leftrightarrow \mathrm{C} / \mathrm{G} \leftrightarrow \mathrm{U}$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\bullet}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{\circ}(0)=1$ and $\left.m_{\circ}(1)=2\right)$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} : $n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For paths: A simple DFA generates compatible sequences

Remark: $\mathrm{A} \leftrightarrow \mathrm{C} / \mathrm{G} \leftrightarrow \mathrm{U}$ symmetry

$$
\begin{aligned}
m_{\bullet}(n) & =m_{\circ}(n-1) \\
m_{\circ}(n) & =m_{\circ}(n-1)+m_{\bullet}(n-1) \\
& =m_{\circ}(n-1)+m_{\circ}(n-2) \\
& =\mathcal{F}(n+2)
\end{aligned}
$$

(Since $m_{\circ}(0)=1$ and $\left.m_{\circ}(1)=2\right)$
$p(n):=m_{\varepsilon}(n)=2 m_{\bullet}(n-1)+2 m_{\circ}(n-1)=2(\mathcal{F}(n)+\mathcal{F}(n+1))=, \mathcal{F}(n+2)$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} : $n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.
For cycle: A barely more involved DFA generates compatible sequences
Remark: $A \leftrightarrow C / G \leftrightarrow U$ symmetry

$$
\begin{aligned}
& m_{\circ_{2}}(n)=\mathcal{F}(n+2) \\
& m_{\circ_{1}}(n)=\mathcal{F}(n+1)
\end{aligned}
$$

(Since $m_{\circ_{1}}(0)=1$ and $\left.m_{\circ_{1}}(1)=1\right)$

$$
\begin{aligned}
c(n) & :=m_{\varepsilon}(n)=2 m_{\circ_{1}}(n-2)+2 m_{\circ_{2}}(n-1) \\
& =2(\mathcal{F}(n-1)+\mathcal{F}(n+1))=2 \mathcal{F}(n)+4 \mathcal{F}(n-1)
\end{aligned}
$$

Counting compatible designs for paths and cycles

Theorem (\#Compatible designs for paths and cycles)

The numbers of compatible designs for paths and cycles of length n are:

$$
p(n)=2 \mathcal{F}_{n+2} \quad \text { and } \quad c(n)=2 \mathcal{F}_{n}+4 \mathcal{F}_{n-1}
$$

where \mathcal{F}_{n} : $n^{\text {th }}$ Fibonacci number, $\mathcal{F}_{0}=0, \mathcal{F}_{1}=1$ and $\mathcal{F}_{n}=\mathcal{F}_{n-1}+\mathcal{F}_{n-2}$.

Theorem (\#Compatible designs for general 2-structures graphs)

G: dependency graph associated with 2 RNA structures (max deg=2).
The number \#Designs (G) of compatible designs for G is given by

$$
\text { \#Designs }(G)=\prod_{p \in \mathcal{P}(G)} 2 \mathcal{F}_{|p|+2} \times \prod_{c \in \mathcal{C}(G)}\left(2 \mathcal{F}_{|c|}+4 \mathcal{F}_{|c|-1}\right)
$$

where G decomposes into paths $\mathcal{P}(G)$ and cycles $\mathcal{C}(G)$.

Counting compatible sequences: WC/Wobble + Two structures

Compatible Base Pairs = Include Wobble base pairs

Question: How many Compatible sequences?
Answer: $\neq \varnothing$! (base-pairs and dependency graphs always bipartite)

$$
\text { \#Designs }(G)=\prod_{c \in C C(G)} \text { \#Designs }(c c)=2322432
$$

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...
$\mathrm{n} \quad \mathrm{s}$ - $\mathrm{C} \quad \mathrm{m}$

f - I - O - v
r i
Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite \rightarrow

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...

Question: How many Compatible sequences?
Answer: Non-bipartite $\rightarrow \varnothing$; Bipartite $\rightarrow \prod 2 \times \# I S(c c)$

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs
Up to trivial symmetry* (e.g. top-left position $\in\{G, A\}$):
Designs ${ }^{\star}(\mathrm{cc}) \subseteq$ IndependentSets(cc)

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs
Up to trivial symmetry ${ }^{\star}$ (e.g. top-left position $\in\{G, A\}$):
Designs ${ }^{\star}(\mathrm{cc}) \subseteq$ IndependentSets(cc)
Also, IS (black) $+\nwarrow$ vert. $\in\{\mathrm{G}, \mathrm{A}\} \Rightarrow$ Unique compatible design

Bijection between Independent Sets and Valid Designs

Remark: No adjacent black letters in compatible designs
Up to trivial symmetry ${ }^{\star}$ (e.g. top-left position $\in\{G, A\}$):
Designs ${ }^{\star}(\mathrm{cc}) \subseteq$ IndependentSets(cc)
Also, IS (black) $+\nwarrow$ vert. $\in\{\mathrm{G}, \mathrm{A}\} \Rightarrow$ Unique compatible design
\Rightarrow Bijection between Designs ${ }^{\star}$ (cc) and IndependentSets(cc).

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}^{(G)}=2 \times \text { Designs}^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G we get:
$\# \operatorname{Designs}(G)=\prod 2 \times \# I S(C C)=2^{|C C(G)|} \times \# I S(G)$

But \#IS(G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01]
(+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S$.

Theorem

> \#resigns is \#P-hard.
$1^{\text {st }}$ International Computational Biology workshop

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}^{(G)}=2 \times \text { Designs}^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G we get:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

But \#IS(G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01]
(+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S$.

Theorem

> \#resigns is \#P-hard.

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}^{(G)}=2 \times \text { Designs }^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G we get:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

But \#IS(G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01]
(+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S . .$.

Theorem
\#r) esigns is \#P-hard.

Valid designs and independent sets

Theorem (\#Valid design for bipartite connected dependency graphs)

Let G be a bipartite connected dependency graph, one has:

$$
\# \operatorname{Designs}(G)=2 \times \text { Designs }^{\star}(G)=2 \times \# I S(G)
$$

For a bipartite dependency graph G we get:

$$
\# \operatorname{Designs}(G)=\prod_{c c \in C C(G)} 2 \times \# I S(c c)=2^{|C C(G)|} \times \# I S(G)
$$

But \#IS (G) is \#P-hard on bipartite graphs [Bubbley\&Dyer'01]
(+ Any G is a dependency graph)
Algorithm $\mathcal{A} \in P$ for $\# \operatorname{Designs}(G) \rightarrow$ Algorithm $\mathcal{A}^{\prime} \in P$ for $\# B I S . .$.

Theorem

\#Designs is \#P-hard.
No polynomial algorithm for \#Designs(G) unless \#P=FP($\Rightarrow P=N P)$

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz’ 06]

For any G built from ≤ 5 pseudoknotted structures, \#Design(G) can be approximated within any ratio in polynomial time (PTAS)

```
Corollary (#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum,
McQuillan'16]
Beyond 5 pseudoknotted structures, approximating #Design becomes as hard
as approximating #BIS without any constraint.
Why pseudoknotted? Because any bipartite graph of max degree }\Delta\mathrm{ can be
decomposed into }\Delta\mathrm{ matchings in polynomial time (Vizing's theorem)
Lastly, connection between counting and sampling [Jerrum, Valiant, Vazirani'86]
Conjecture (#B)S hardiness of sampting)
```

Generating comp. sequences (almost) uniformly for general input is \#BIS-hard.

Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz'06]

For any G built from ≤ 5 pseudoknotted structures, \#Design (G) can be approximated within any ratio in polynomial time (PTAS)

> Corollary (\#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum, McQuillan'16]

> Beyond 5 pseudoknotted structures, approximating \#Design becomes as hard as approximating \#BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree Δ can be decomposed into Δ matchings in polynomial time (Vizing's theorem).

_astly, connection between counting and sampling [Jerrum, Valiant, Vazirani'86]

Confecture (\#B) hardiness of sampling)

 Generating comp. sequences (almost) uniformly for general input is \#BIS-hard
Consequences

Corollary (\#Approximability for ≤ 5 structures) [Weitz ${ }^{\circ} 06$

For any G built from ≤ 5 pseudoknotted structures, \#Design (G) can be approximated within any ratio in polynomial time (PTAS)

> Corollary (\#BIS hardness for > 5 struct.) [Cai, Galanis, Goldberg, Jerrum, McQuillan'16]

> Beyond 5 pseudoknotted structures, approximating \#Design becomes as hard as approximating \#BIS without any constraint.

Why pseudoknotted? Because any bipartite graph of max degree Δ can be decomposed into Δ matchings in polynomial time (Vizing's theorem).

Lastly, connection between counting and sampling [Jerrum, Valiant, Vazirani'86].
Conjecture (\#BIS hardness of sampling)
Generating comp. sequences (almost) uniformly for general input is \#BIS-hard.

Perspectives: FPT and Boltzmann sampling algorithms

i) Input Structures

ii) Merged Base-Pairs

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs

■ FPT algorithm for counting based on tree decomposition
■ Multidimensional Boltzmann sampling to control energies, GC...

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...
$\mathrm{n} \quad \mathrm{s}-\mathrm{C} \quad \mathrm{m}$

$f-I-0=v$
$r \quad i$
Question: How many Compatible sequences?
Answer: Bipartite \rightarrow

Counting compatible sequences: Watson-Crick + > 2 structures

Compatible Base Pairs = Include Wobble base pairs

Dependency graph:
Cycles, Paths, Trees...
$\mathrm{n} \quad \mathrm{s}$ - $\mathrm{C} \quad \mathrm{m}$

f - I - O - v
r i
Question: How many Compatible sequences?
Answer: Bipartite \rightarrow \} 2 \times \# I S (c c) = 4 9 6 6 7 2 $c c \in C C(G)$

Perspectives: FPT and Boltzmann sampling algorithms

i) Input Structures

ii) Merged Base-Pairs

iii) Compatibility Graph

GCCGCGGUAGCUACAGCCGGCU UUGGGGUUGGGUAGACUCCGGU GCUGCAGCGGCUGUGGCUGGCC GGUUCUGGUUUGCUUAGGGCUA CGACGGCGGUGCCGGCAUUUGC

vi) Final Designs

■ FPT algorithm for counting based on tree decomposition
■ Multidimensional Boltzmann sampling to control energies, GC...

Conclusions

- RNA is cool!
- RNA design is one of the current challenge of RNA bioinformatics with far-reaching consequences for drug design, synthetic biology...

■ Practical use-cases require expressive and modular constraints

■ Future methods: kinetics, interactions,multiple structures, pseudoknots...

- RNA inverse folding is the combinatorial core of design. It remains largely unsolved, and opens new lines of research in Comp. Sci.

Collaborators

University McGill Vladimir Reinharz Jérôme Waldispühl	■*	LIGM - Marne la Vallée	
		Stéphane Vialette LIX - Ecole Polytechnique	
MIT	罭	Alice Héliou Mireille Regnier	
Boonie Berger			
Srinivas Devadas		Simon Fraser University	
Alex Levin		Jozef Hales	
Charles O'Donnell		Jan Manuch (UBC)	
LRI - Univ. Paris Sud	\\|	Ladislav Stacho	
Alain Denise		Cédric Chauve Julien Courtiel	
Vincent Le Gallic			
Wuhan University	-	TBI Vienna	
Yi Zhang		Ronnie Lorenz	
Yu Zhou		Andrea Tanzer	

Thanks!

Poster submission \& Registration open soon. . . (+ ISCB travel fellowships for students)

References I

R. Nussinov and A.B. Jacobson.

Fast algorithm for predicting the secondary structure of single-stranded RNA.
Proc Natl Acad Sci U S A, 77:6903-13, 1980.

