
Alignment-free sequence comparison using
maximal common substrings

Burkhard Morgenstern

Dept. Bioinformatics
Institute of Microbiology and Genetics (IMG)

University of Göttingen

14. December 2017

Spaced Words - recap

Spaced Words - recap

Input: pairwise distances between ‘objects’

Output: tree, with ‘objects’ at tips, representing distances.

Example (Distance matrix and tree representing distances)

A B C D E
A 0 13 9 4 17
B 0 12 11 6
C 0 7 16
D 0 15
E 0

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G T C G
S2 A C A T C G A G C G A G

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G T C G
S2 A C A T C G A G C G A G

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G T C G
S2 A C A T C G A G C G A G

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G T C G
S2 A C A T C G A G C G A G

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G − T C G − −
S2 − − A C A T C G A G C G A G

Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G − T C G − −
S2 − − A C A T C G A G C G A G

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

2. approach: consider number of spaced-word matches
for pattern set P = {P1, . . . ,Pm}

Example (Number N of spaced-word matches)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Use N to estimate number of substitutions between sequences.

But: only possible for sequences with small insertions and deletions.

Spaced Words - recap

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

es
ti

m
at

ed
 d

is
ta

n
ce

substitutions per site

Evolutionary Distance multiple pattern

Jensen Shannon multiple pattern

expected

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

es
ti

m
at

ed
 d

is
ta

n
ce

substitutions per site

Evolutionary Distance multiple pattern

Jensen Shannon multiple pattern

expected

Figure : Estimated distances with Jensen-Shannon and new distance
measure on simulated DNA sequences (A) without indels (top) and with 1%
probability per site (bottom) for multiple spaced words.

Filtered Spaced-Word Matches

Filtered Spaced-Word Matches

Related approaches:

(1) Co-phylog (Yi et al., 2013)

(2) andi (Haubold et al., 2014)

Idea: estimate mismatch frequency from local gap-free alignments.

Filtered Spaced-Word Matches

Related approaches:

(1) Co-phylog (Yi et al., 2013)

(2) andi (Haubold et al., 2014)

Idea: estimate mismatch frequency from local gap-free alignments.

Filtered Spaced-Word Matches

Related approaches:

(1) Co-phylog (Yi et al., 2013)

(2) andi (Haubold et al., 2014)

Idea: estimate mismatch frequency from local gap-free alignments.

Filtered Spaced-Word Matches

Related approaches:

(1) Co-phylog (Yi et al., 2013)

(2) andi (Haubold et al., 2014)

Idea: estimate mismatch frequency from local gap-free alignments.

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 T C A G G A C A T A T C C A T
S2 A G A C A G A T C C A G C

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 T C A G G A C A T A T C C A T
S2 A G A C A G A T C C A G C

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 T C A G G A C A T A T C C A T
S2 A G A C A G A T C C A G C

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 T C A G G A C A T A T C C A T
S2 A G A C A G A T C C A G C

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 T C A G G A C A T A T C C A T
S2 A G A C A G A T C C A G C

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 . . . G A C A T A T C C . . .
S2 . . . G A C A G A T C C . . .

Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 . . . G A C A T A T C C . . .
S2 . . . G A C A G A T C C . . .

Consider nucleotides between word matches to estimate distances

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 . . . G G A C A T A C C C C A . . .
S2 . . . G G A C A G A C T C C A . . .

Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 . . . G G A C A T A C C C C A . . .
S2 . . . G G A C A G A C T C C A . . .

Consider nucleotides between word matches to estimate distances

Filtered Spaced-Word Matches

Difficulty:

Only homologous matches can be used to estimate phylogenetic
distances

⇒ Co-phylog and andi use word matches of sufficient length to
exclude random similarities.

But: O(n) homologue matches, O(n2) background matches.

⇒ long word matches necessary if long sequences compared

Filtered Spaced-Word Matches

Difficulty:

Only homologous matches can be used to estimate phylogenetic
distances

⇒ Co-phylog and andi use word matches of sufficient length to
exclude random similarities.

But: O(n) homologue matches, O(n2) background matches.

⇒ long word matches necessary if long sequences compared

Filtered Spaced-Word Matches

Difficulty:

Only homologous matches can be used to estimate phylogenetic
distances

⇒ Co-phylog and andi use word matches of sufficient length to
exclude random similarities.

But: O(n) homologue matches, O(n2) background matches.

⇒ long word matches necessary if long sequences compared

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 A T C A G G A C A T A C G C C A T
S2 C G G A C A T G C T C C A G C

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 A T C A G G A C A T A C G C C A T
S2 C G G A C A T G C T C C A G C

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 A T C A G G A C A T A C G C C A T
S2 C G G A C A T G C T C C A G C

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 A T C A G G A C A T A C G C C A T
S2 C G G A C A T G C T C C A G C

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 A T C A G G A C A T A C G C C A T
S2 C G G A C A T G C T C C A G C

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 . . . A C A T A C G C . . .
S2 . . . A C A T G C T C . . .

1 1 0 1 0 0 0 1

Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 . . . A C A T A C G C . . .
S2 . . . A C A T G C T C . . .

1 1 0 1 0 0 0 1

Consider nucleotides at don’t-care positions to estimate distances

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)
A G ∗ C (S2)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)
A G ∗ C (S2)
G A ∗ A (S2)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)
A G ∗ C (S2)
G A ∗ A (S2)
A C ∗ G (S2)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)
A G ∗ C (S2)
G A ∗ A (S2)
A C ∗ G (S2)
C A ∗ A (S2)

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

C A ∗ A (S1)
A C ∗ G (S1)
C A ∗ A (S1)
A G ∗ C (S1)
C A ∗ A (S2)
A G ∗ C (S2)
G A ∗ A (S2)
A C ∗ G (S2)
C A ∗ A (S2)

List L of all spaced words in S1 and S2

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Sort L in lexicographic order

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Finding spaced-word matches

Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A

A C ∗ G (S1)
A C ∗ G (S2)
A G ∗ C (S1)
A G ∗ C (S2)
C A ∗ A (S1)
C A ∗ A (S1)
C A ∗ A (S2)
C A ∗ A (S2)
G A ∗ A (S2)

Identical spaced-words in buckets of L

Filtered Spaced-Word Matches

Default parameters in FSWM:

Weight w = 12

100 don’t-care positions

⇒ Sensitive, but many random background matches

Example (Homologous and background SW matches)
Indel-free sequences of length 5 Mb, match probability 0.8:

≈ 3.43 · 105 homologous spaced-word matches
≈ 1.56 · 106 background spaced-word matches

Filtered Spaced-Word Matches

Default parameters in FSWM:

Weight w = 12

100 don’t-care positions

⇒ Sensitive, but many random background matches

Example (Homologous and background SW matches)
Indel-free sequences of length 5 Mb, match probability 0.8:

≈ 3.43 · 105 homologous spaced-word matches
≈ 1.56 · 106 background spaced-word matches

Filtered Spaced-Word Matches

Default parameters in FSWM:

Weight w = 12

100 don’t-care positions

⇒ Sensitive, but many random background matches

Example (Homologous and background SW matches)
Indel-free sequences of length 5 Mb, match probability 0.8:

≈ 3.43 · 105 homologous spaced-word matches
≈ 1.56 · 106 background spaced-word matches

Filtered Spaced-Word Matches

Default parameters in FSWM:

Weight w = 12

100 don’t-care positions

⇒ Sensitive, but many random background matches

Example (Homologous and background SW matches)
Indel-free sequences of length 5 Mb, match probability 0.8:

≈ 3.43 · 105 homologous spaced-word matches
≈ 1.56 · 106 background spaced-word matches

Remove low-scoring spaced-word matches

To filter out random background spaced-word matches:

Use nucleotide substitution matrix
(Chiaromonte et al., 2002)

Calculate score for each spaced-word match:
Sum of substitution scores at don’t-care positions

Discard spaced-word matches with score below threshold

Remove low-scoring spaced-word matches

To filter out random background spaced-word matches:

Use nucleotide substitution matrix
(Chiaromonte et al., 2002)

Calculate score for each spaced-word match:
Sum of substitution scores at don’t-care positions

Discard spaced-word matches with score below threshold

Remove low-scoring spaced-word matches

To filter out random background spaced-word matches:

Use nucleotide substitution matrix
(Chiaromonte et al., 2002)

Calculate score for each spaced-word match:
Sum of substitution scores at don’t-care positions

Discard spaced-word matches with score below threshold

Remove low-scoring spaced-word matches

To filter out random background spaced-word matches:

Use nucleotide substitution matrix
(Chiaromonte et al., 2002)

Calculate score for each spaced-word match:
Sum of substitution scores at don’t-care positions

Discard spaced-word matches with score below threshold

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1

Nucleotides at don’t-care positions

Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1

Score = -31 + 91 -114 = -54

Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)

Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)

Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)

Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)

Spaced-word histograms

Figure : i.i.d sequences, 0.1 subst. per site, indel-free, 5 Mb

Spaced-word histograms

Figure : i.i.d sequences, 0.3 subst. per site, indel-free, 5 Mb

Spaced-word histograms

Figure : Sagittula stellata E37 vs Rhodobacterales bacterium HTCC2255.

Spaced-word histograms

Figure : Octadecabacter arcticus 238 vs Octadecabacter antarticus 307.

Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances

Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances

Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances

Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances

Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d

di
st

an
ce

s

Substitutions per position

CO−phylog
expected

Co-phylog

Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d

di
st

an
ce

s

Substitutions per position

andi
expected

andi

Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d

di
st

an
ce

s

Substitutions per position

filtered spaced word matches
expected

FSWM

Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424

Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424

Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424

Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424

Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424

Program Evaluation

Program Evaluation

Real-world benchmark data: 14 plant genomes (Brassicales)

Total size 4.8 Gb, up to 0.63 substitutions per site.

No reasonable results with andi, distance too large
Co-phylog did not finish

Program Evaluation

Vitis vinifera
Eucalyptus grandis
Eucalyptus camaldulensis
Theobroma cacao
Gossypium raimondii
Citrus clementina
Citrus sinensis
Carica papaya
Capsella rubella
Arabidopsis thaliana
Arabidopsis lyrata
Eutrema halophilum
Brassica rapa
Eutrema parvulum

98
91

89

66

100

100

100

100

80

90

97

rosids

Malvidae

(malvids)

Myrtales

Malvales

Sapindales

Brassicales

Vitis vinifera

Brassica rapa
Gossypium raimondii
Theobroma cacao
Capsella rubella
Eucalyptus grandis
Arabidopsis lyrata
Arabidopsis thaliana
Eucalyptus camaldulensis
Carica papaya
Eutrema parvulum
Eutrema halophilum
Citrus clementina
Citrus sinensis

Vitis vinifera

Eucalyptus camaldulensis
Eucalyptus grandis
Theobroma cacao
Gossypium raimondii

Carica papaya
Capsella rubella
Arabidopsis lyrata
Arabidopsis thaliana

Eutrema parvulum

Brassica rapa
Eutrema halophilum

Citrus clementina
Citrus sinensis

Vitis vinifera

Eucalyptus camaldulensis
Eucalyptus grandis
Theobroma cacao
Gossypium raimondii
Citrus clementina
Citrus sinensis
Carica papaya
Arabidopsis lyrata
Arabidopsis thaliana
Capsella rubella
Eutrema halophilum
Eutrema parvulum
Brassica rapa

B

C D

A

E

Figure : A: Reference tree (protein MSA, Likelihood), B: andi, C-E: FSWM
with weight w = 12,13,14.

Program Evaluation

Vitis vinifera
Eucalyptus grandis
Eucalyptus camaldulensis
Theobroma cacao
Gossypium raimondii
Citrus clementina
Citrus sinensis
Carica papaya
Capsella rubella
Arabidopsis thaliana
Arabidopsis lyrata
Eutrema halophilum
Brassica rapa
Eutrema parvulum

98
91

89

66

100

100

100

100

80

90

97

rosids

Malvidae

(malvids)

Myrtales

Malvales

Sapindales

Brassicales

Vitis vinifera

Brassica rapa
Gossypium raimondii
Theobroma cacao
Capsella rubella
Eucalyptus grandis
Arabidopsis lyrata
Arabidopsis thaliana
Eucalyptus camaldulensis
Carica papaya
Eutrema parvulum
Eutrema halophilum
Citrus clementina
Citrus sinensis

Vitis vinifera

Eucalyptus camaldulensis
Eucalyptus grandis
Theobroma cacao
Gossypium raimondii

Carica papaya
Capsella rubella
Arabidopsis lyrata
Arabidopsis thaliana

Eutrema parvulum

Brassica rapa
Eutrema halophilum

Citrus clementina
Citrus sinensis

Vitis vinifera

Eucalyptus camaldulensis
Eucalyptus grandis
Theobroma cacao
Gossypium raimondii
Citrus clementina
Citrus sinensis
Carica papaya
Arabidopsis lyrata
Arabidopsis thaliana
Capsella rubella
Eutrema halophilum
Eutrema parvulum
Brassica rapa

B

C D

A

E

Figure : A: Reference tree (protein MSA, Likelihood), B: andi, C-E: FSWM
with weight w = 12,13,14.

Filtered Spaced-Word Matches

Ongoing project: Filtered Spaced Word Matches for protein sequences
(Jendrik Schellhorn)

Chris

Jendrik
Eisen

Svenja Schöbel, Jendrik Schellhorn

Spaced Anchors

New project: Use filtered spaced word matches as anchor points for
genome alignment

Manuscript uploaded to arXiv, submitted to OUP Bioinformatics

Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C T C G T
S2 C A C G A T G A T C G

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points

Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C T C G T
S2 C A C G A T G A T C G

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points

Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C T C G T
S2 C A C G A T G A T C G

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points

Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C − T C G T
S2 C − − A C G A T G A T C G −

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points

Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G − − G T C T C G T
S2 − − C A C G A T G A − T C G −

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points

Spaced Anchors

Program evaluation: use spaced anchors in Mugsy instead of
MUMmer (exact word matches).

Spaced Anchors

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P
re
ci
si
o
n

average pairwise distance

mugsy + MUMmer
mugsy + FSWM (w = 10)
mugsy + FSWM (w = 8)
cactus

Test results

Spaced Anchors

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

R
ec
al
l

average pairwise distance

mugsy + MUMmer

mugsy + FSWM (w = 10)

mugsy + FSWM (w = 8)

cactus

Test results

Remove ambiguous spaced-word matches

Duplicated regions in genomes can confuse phylogeny reconstruction.

Therefore:

FSWM greedily selects one-to-one spaced-word matching

Remove ambiguous spaced-word matches

Duplicated regions in genomes can confuse phylogeny reconstruction.

Therefore:

FSWM greedily selects one-to-one spaced-word matching

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA , 3 times in S1

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA , 3 times in S1

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA , 3 times in S1 , 2 times in S2

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69 A C G T

A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69
(1,9) GG AA 191

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69
(8,2) TG AG − 145

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69
(8,2) TG AG − 145
(8,9) TG AA − 23

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Remove spaced-word matches with negative scores (filtering)

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69
(8,2) TG AG − 145
(8,9) TG AA − 23

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Remove spaced-word matches with negative scores (filtering)

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

For one-to-one mapping: sort spaced-word matches . . .

aligned score
(1,2) GG AG 69
(1,9) GG AA 191
(6,2) GG GG 200
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

For one-to-one mapping: sort spaced-word matches . . .

aligned score
(6,2) GG GG 200
(1,9) GG AA 191
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . use greedy algorithm

aligned score
(6,2) GG GG 200
(1,9) GG AA 191
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . use greedy algorithm

aligned score
(6,2) GG GG 200 X
(1,9) GG AA 191
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . use greedy algorithm

aligned score
(6,2) GG GG 200 X
(1,9) GG AA 191 X
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Result: two spaced-word matches involving G ∗ ∗TA accepted

aligned score
(6,2) GG GG 200 X
(1,9) GG AA 191 X
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Introduction

Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !

Introduction

Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !

Introduction

Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !

Introduction

Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !

Introduction

Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !

Average Common Substring (ACS)

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A

Average Common Substring (ACS)

How to find longest substring in S2 that matches substring starting at
position i in S1?

Use generalized suffix trees!

Average Common Substring (ACS)

How to find longest substring in S2 that matches substring starting at
position i in S1?

Use generalized suffix trees!

Average Common Substring (ACS)

D. Gusfield, Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology

Average Common Substring (ACS)

Example (Suffix tree)

Suffix tree for S = xabxac (D. Gusfield)

Average Common Substring (ACS)

Example (Generalized suffix tree)

Generalized suffix tree for strings S1 = xabxa and S2 = babxba
(D. Gusfield)

Average Common Substring (ACS)

Define distance between sequences S1 and S2:

L(S1,S2) := average length of the longest substring starting
at i in S1, matching a subsequence of S2

d(S1,S2) :=
log(|S2|)
L(S1,S2)

− log(|S1|)
L(S1,S1)

D(S1,S2) :=
d(S1,S2) + d(S2,S1)

2

Note: D(S1,S2) not based on stochastic model of evolution!

Average Common Substring (ACS)

Define distance between sequences S1 and S2:

L(S1,S2) := average length of the longest substring starting
at i in S1, matching a subsequence of S2

d(S1,S2) :=
log(|S2|)
L(S1,S2)

− log(|S1|)
L(S1,S1)

D(S1,S2) :=
d(S1,S2) + d(S2,S1)

2

Note: D(S1,S2) not based on stochastic model of evolution!

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees

Average Common Substring (ACS)

Figure : ACS tree based on complete mammalian mtDNA

Average Common Substring (ACS)

Figure : ACS tree based on proteomes

The kmacs approach

The kmacs approach

The kmacs approach

General idea:

Instead of exact matches, allow mismatches:

For each position i in S1, find longest substring starting at i matching a
substring of S2 with k mismatches.

The kmacs approach

General idea:

Instead of exact matches, allow mismatches:

For each position i in S1, find longest substring starting at i matching a
substring of S2 with k mismatches.

The kmacs approach

General idea:

Instead of exact matches, allow mismatches:

For each position i in S1, find longest substring starting at i matching a
substring of S2 with k mismatches.

The kmacs approach

Example (Longest k -mismatch common substring)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.

The kmacs approach

Example (Longest k -mismatch common substring)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.

The kmacs approach

Example (Longest k -mismatch common substring)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.

The kmacs approach

Example (Longest k -mismatch common substring)

S1 T G C A G A C G C A T

S2 T G G A G T C A C A T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.

The kmacs approach

Time complexity for exact solution:

Naive algorithm: O(n3)

With suffix trees: O(n2 · k)

The kmacs approach

Time complexity for exact solution:

Naive algorithm: O(n3)

With suffix trees: O(n2 · k)

The kmacs approach

Time complexity for exact solution:

Naive algorithm: O(n3)

With suffix trees: O(n2 · k)

The kmacs approach

Heuristic to approximate longest k -mismatch substring:

For each position i in Si , find longest substring matching substring
of S2 (like in ACS)

Extend after first mismatch etc. until k + 1th mismatch.

The kmacs approach

Heuristic to approximate longest k -mismatch substring:

For each position i in Si , find longest substring matching substring
of S2 (like in ACS)

Extend after first mismatch etc. until k + 1th mismatch.

The kmacs approach

Heuristic to approximate longest k -mismatch substring:

For each position i in Si , find longest substring matching substring
of S2 (like in ACS)

Extend after first mismatch etc. until k + 1th mismatch.

The kmacs approach

Example (Heuristic in kmacs, k = 3)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch

The kmacs approach

Example (Heuristic in kmacs, k = 3)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch

The kmacs approach

Example (Heuristic in kmacs, k = 3)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch

The kmacs approach

Example (Heuristic in kmacs, k = 3)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch

The kmacs approach

Example (Heuristic in kmacs, k = 3)

S1 T G C A G A C G C A T

S2 T G G A G T C A C A T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch

The kmacs approach

Note:

Longest match of substring starting at i may not be unique.

Therefore: extend all longest matches to find longest k -mismtch
substring.

The kmacs approach

Note:

Longest match of substring starting at i may not be unique.

Therefore: extend all longest matches to find longest k -mismtch
substring.

The kmacs approach

Note:

Longest match of substring starting at i may not be unique.

Therefore: extend all longest matches to find longest k -mismtch
substring.

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension

The kmacs approach

Generalized suffix trees can be used:

To find exact word matches (as in ACS)

To extend matches after mismatch

The kmacs approach

Example (Generalized suffix tree)

Generalized suffix tree for strings S1 = xabxa and S2 = babxba
(D. Gusfield, p. 117)

The kmacs approach

Time complexity for finding maximal exact matches:

O(n · z)

z = average number of maximal matches to a substring in S2 starting
at a position i in S1.

Time complexity for finding and extending maximal exact matches:

O(n · z · k)

The kmacs approach

Time complexity for finding maximal exact matches:

O(n · z)

z = average number of maximal matches to a substring in S2 starting
at a position i in S1.

Time complexity for finding and extending maximal exact matches:

O(n · z · k)

The kmacs approach

Time complexity for finding maximal exact matches:

O(n · z)

z = average number of maximal matches to a substring in S2 starting
at a position i in S1.

Time complexity for finding and extending maximal exact matches:

O(n · z · k)

The kmacs approach

Implementation: Use enhanced suffix arrays instead of suffix trees
(software by Kärkkäinen and Sanders (2003) MPI Saarbrücken)

Figure : Generalized enhanced suffix array for strings banana and ananas

The kmacs approach

As in Ulitsky et al. (2006): define distance between S1 and S2:

L(S1,S2) := average length of k -mismatch longest substrings

d(S1,S2) :=
log(|S2|)
L(S1,S2)

− log(|S1|)
L(S1,S1)

D(S1,S2) :=
d(S1,S2) + d(S2,S1)

2

Program Evaluation

Figure : Mitochondrial DNA sequences (Haubold et al.) (a) ACS, (b) tree
calculated with Kr (Haubold et al.), (c) kmax, k = 70, (d) reference tree.

Program Evaluation

Figure : Mitochondrial DNA sequences (Haubold et al.) (a) ACS, (b) tree
calculated with Kr (Haubold et al.), (c) kmax, k = 70, (d) reference tree.

Program Evaluation

Figure : Simulated DNA sequences (using ROSE). Average RF distances for
20 sequence sets with 50 sequences of length 16,000 each. ROSE
‘relatednes’ = 70

Program Evaluation

0
5

10
15
20
25
30
35

R
ob

in
so

n
-F

ou
ld

s
D

is
ta

n
ce

Figure : Results on BAliBASE (sum of RF distances over 218 Sequence sets)

.

Program Evaluation

0
10
20
30
40
50
60
70
80
90

100

R
o

b
in

so
n

-F
o

u
ld

s
D

is
ta

n
ce

Figure : Simulated protein sequences (using ROSE). Average values for 20
sequence sets with 125 sequences of length 300 each. ROSE ‘relatednes’ =
480

Program Evaluation

Method runtime (s)
Clustal W 1,817
Clustal Ω 1,039
spaced words, 1 pattern, k = 8 0.3
spaced words, 100 patterns, k = 8 27.6
ACS 2.8
Kr 0.9
CVTree 0.5
kmacs, k = 10 7.6
kmacs, k = 50 21.4

Program runtime on 50 simulated DNA sequences of length 16,000.

Program Evaluation

Seq. length k runtime (s)
100 kb 0 0.04
100 kb 50 0.12
100 kb 100 0.29

1 mb 0 0.19
1 mb 50 1.15
1 mb 100 2.00

10 mb 0 3.11
10 mb 50 13.47
10 mb 100 22.01

Program runtime on pairs of simulated DNA sequences.

Kr (‘shustring’ approach)

First alignment-free approach to estimate number of substitutions per
sequence position!

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1

Kr (‘shustring’ approach)

To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1 shustring length = 8

Kr (‘shustring’ approach)

To estimate number d of substitutions per position:

Calculate expected shustring length as function of mismatch rate p

Moment-based approach: substitute expected shustring length by
empirical average shustring length to calculate p

Calculate d from p using Jukes-Cantor formula

Kr (‘shustring’ approach)

To estimate number d of substitutions per position:

Calculate expected shustring length as function of mismatch rate p

Moment-based approach: substitute expected shustring length by
empirical average shustring length to calculate p

Calculate d from p using Jukes-Cantor formula

Kr (‘shustring’ approach)

To estimate number d of substitutions per position:

Calculate expected shustring length as function of mismatch rate p

Moment-based approach: substitute expected shustring length by
empirical average shustring length to calculate p

Calculate d from p using Jukes-Cantor formula

Kr (‘shustring’ approach)

To estimate number d of substitutions per position:

Calculate expected shustring length as function of mismatch rate p

Moment-based approach: substitute expected shustring length by
empirical average shustring length to calculate p

Calculate d from p using Jukes-Cantor formula

Kr (‘shustring’ approach)

Definition

Define random variables:

Xi,j = length of longest exact match at i and j, resp.
Xi = max1≤j≤L Xi,j

→ calculate P(Xi = m) and E(Xi)

Kr (‘shustring’ approach)

Definition

Define random variables:

Xi,j = length of longest exact match at i and j, resp.
Xi = max1≤j≤L Xi,j

→ calculate P(Xi = m) and E(Xi)

Kr (‘shustring’ approach)

Results: precise estimation of distances up to ∼ 0.5 substitutions per
position

The length of k -mismatch common substrings

The length of k -mismatch common substrings

Alg. Mol. Biol. 12, 27

The length of k -mismatch common substrings

Generalize idea from Haubold et al. (2009) for same model of
evolution. Goal: estimate match probability p.

Definition (Length of k -mismatch common substrings)

Define random variables:

X (k)
i,j = length of longest k-mismatch common substring at i , j

X (k)
i = max1≤j≤L X (k)

i,j

The length of k -mismatch common substrings

Generalize idea from Haubold et al. (2009) for same model of
evolution. Goal: estimate match probability p.

Definition (Length of k -mismatch common substrings)

Define random variables:

X (k)
i,j = length of longest k-mismatch common substring at i , j

X (k)
i = max1≤j≤L X (k)

i,j

The length of k -mismatch common substrings

Remark (Length distribution of X (k)
i,j)

P
(

X (k)
i,j = m

)
=

(m

k

)
pm−k (1− p)k+1 if i = j(m

k

)
qm−k (1− q)k+1 else

(1)

‘Negative binomial’ distribution.

The length of k -mismatch common substrings

Remark (Length distribution of X (k)
i,j)

P
(

X (k)
i,j = m

)
=

(m

k

)
pm−k (1− p)k+1 if i = j(m

k

)
qm−k (1− q)k+1 else

(1)

‘Negative binomial’ distribution.

The length of k -mismatch common substrings

Example (Negative binomial distribution)

Negative binomial distribution for varying values of p (Wikipedia)

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 A G A C G C A T

S2 A G T C A C A T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension

The length of k -mismatch common substrings

Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match

The length of k -mismatch common substrings

Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match

The length of k -mismatch common substrings

Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match

The length of k -mismatch common substrings

Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match

The length of k -mismatch common substrings

Then, with (1), we obtain

Theorem (Length distribution of k -mismatch extension)

P
(

X̂ (k)
i = m

)
= Ph ·

(
m
k

)
pm−k (1− p)k+1

+ Pb ·
(

m
k

)
qm−k (1− q)k+1

The length of k -mismatch common substrings

	0

	2000

	4000

	6000

	8000

	10000

	12000

	14000

	20 	30 	40 	50 	60 	70 	80

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	100k,			k	=	20,			p	=	0.6		(RF	dist	=		0.57)

kmacs	homology
kmacs	background

Expected number of k -mismatch common substrings of length m
with kmacs for sequence length 100 kb, p = 0.6 and k = 20

The length of k -mismatch common substrings

	0

	50

	100

	150

	200

	20 	30 	40 	50 	60 	70 	80

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	100k,			k	=	20,			p	=	0.6		(RF	dist	=		0.57)

kmacs	homology
kmacs	background

Expected number of k -mismatch common substrings of length m
with kmacs for sequence length 100 kb, p = 0.6 and k = 20

The length of k -mismatch common substrings

Corollary

1 The distribution of X̂ (k)
i is the sum of two negative binomials

(‘homolgous’ and ‘background’) with maxima at⌈
k

1− p
− 1
⌉

and
⌈

k
1− q

− 1
⌉

2 If p and k are large enough, X̂ (k)
i is bimodal, and we can estimate

p̂ =
mE + 1− k

mE + 1
(2)

with mE location of empirical ‘homologous’ peak.

The length of k -mismatch common substrings

	0

	10

	20

	30

	40

	50

	20 	40 	60 	80 	100 	120 	140 	160

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	500k,			k	=	20,			p	=	0.5		(0.824	subst/pos)

extension,	homology
extension,	background

extension,	sum

Expected number of k -mismatch extensions for seq. length 500 kb
p = 0.5 and k = 20

The length of k -mismatch common substrings

	0

	10

	20

	30

	40

	50

	20 	40 	60 	80 	100 	120 	140 	160

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	500k,			k	=	30,			p	=	0.5		(JC	dist	=		0.82)

extension,	homology
extension,	background

extension,	sum

Expected number of k -mismatch extensions for seq. length 500 kb
p = 0.5 and k = 30

The length of k -mismatch common substrings

	0

	10

	20

	30

	40

	50

	60 	80 	100 	120 	140 	160

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	500k,			k	=	60,			p	=	0.5		(JC	dist	=		0.82)

extension,	homology
extension,	background

extension,	sum

Expected number of k -mismatch extensions for seq. length 500 kb
p = 0.5 and k = 60

The length of k -mismatch common substrings

	0

	10

	20

	30

	40

	50

	70 	80 	90 	100 	110 	120 	130 	140 	150 	160

fre
qu
en
cy

k-mismatch	common	substring	length	

len	=	500k,			k	=	70,			p	=	0.5		(0.824	subst/pos)

extension,	homology
extension,	background

extension,	sum

Expected number of k -mismatch extensions for seq. length 500 kb
p = 0.5 and k = 70

The length of k -mismatch common substrings

	0

	10

	20

	30

	40

	50

	80 	100 	120 	140 	160 	180 	200 	220 	240

fre
qu

en
cy

k-mismatch	common	substring	length	

len	=	500	kb,			k	=	90,			p	=	0.5	(0.824	subst/pos)

raw	frequencies
smoothed,	w=11
smoothed,	w=31
smoothed,	w=41

Figure : Empirical number of k -mismatch extensions, smoothed with window
width 1, 11, 31, 41

The length of k -mismatch common substrings

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
��
�
�
��
�

��
�
	
�
��
��
��

�
�
��
�
�
�

�
��
�

�

�	
����	���������������

��������������
����

Estimated vs. real distances for simulated sequences, andi

The length of k -mismatch common substrings

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
��
�
�
��
�

��
�
	
�
��
��
��

�
�
��
�
�
�

�
��
�

�

�	
����	���������������

��������������
����

Estimated vs. real distances for simulated sequences, FSWM

The length of k -mismatch common substrings

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
�
��
�
�
��
�

��
�
	
�
��
��
��

�
�
��
�
�
�

�
��
�

�

�	
����	���������������

��������������
���������

Estimated vs. real distances for simulated sequences
based on length of k -mismatch common substrings

The length of k -mismatch common substrings

Evaluation on 27 mitochondrial genomes from primates
(Robinson-Foulds distance)

The length of k -mismatch common substrings

Evaluation on 27 mitochondrial genomes from primates
(branch score distance)

The length of k -mismatch common substrings

Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data

The length of k -mismatch common substrings

Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data

The length of k -mismatch common substrings

Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data

The length of k -mismatch common substrings

Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data

The length of k -mismatch common substrings

Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data

Thank you:

Chris Leimeister
Lars Hahn

Marcus Boden
Thomas Dencker

Bingyao Zhu
Jendrik Schellhorn

Svenja Schöbel
Salma Sohrabi-Jahromi

Sanghamitra Bandyopadhyay
Angana Chakraborty

Laurent Noé
Rachid Ounit

Stefano Lonardi

