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Spaced Words - recap

Input: pairwise distances between ‘objects’

Output: tree, with ‘objects’ at tips, representing distances.

Example (Distance matrix and tree representing distances)

A B C D E
A 0 13 9 4 17
B 0 12 11 6
C 0 7 16
D 0 15
E 0



Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G T C G
S2 A C A T C G A G C G A G
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Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G − T C G − −
S2 − − A C A T C G A G C G A G



Spaced Words - recap

Simplest approach:

Define distances between two sequences as (estimated) number
of substitutions per position
Estimate number of substitutions per position based on number of
mismatches in alignments with Jukes-Cantor

Example (Pairwise sequence alignment)

S1 T C A C G T C G − T C G − −
S2 − − A C A T C G A G C G A G



Spaced Words - recap

1. approach: consider spaced-word frequencies
for pre-defined pattern set P = {P1, . . . ,Pm}

Example (Spaced-word frequencies)

For P = {1101; 1011} and sequences

S1 A T T A C C A C
S2 A C T A C C G

Compare spaced-word frequency vectors of sequences

Rough measure of sequence dissimilarity; spaced words statistically
more stable than contiguous words.
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Figure : Estimated distances with Jensen-Shannon and new distance
measure on simulated DNA sequences (A) without indels (top) and with 1%
probability per site (bottom) for multiple spaced words.
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Related approaches:

(1) Co-phylog (Yi et al., 2013)

(2) andi (Haubold et al., 2014)

Idea: estimate mismatch frequency from local gap-free alignments.
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(1) Co-phylog:
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Example (Co-phylog, ` = 4)
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(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 . . . G A C A T A T C C . . .
S2 . . . G A C A G A T C C . . .



Filtered Spaced-Word Matches

(1) Co-phylog:
Search for pairs of exact word matches of length `, distance one

Example (Co-phylog, ` = 4)

S1 . . . G A C A T A T C C . . .
S2 . . . G A C A G A T C C . . .

Consider nucleotides between word matches to estimate distances



Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C
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(2) andi:
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both sequences

Example (andi)

S1 A T C A G G A C A T A C C C C A T
S2 C G G A C A G A C T C C A G C



Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 . . . G G A C A T A C C C C A . . .
S2 . . . G G A C A G A C T C C A . . .



Filtered Spaced-Word Matches

(2) andi:
Search for pairs of maximal exact word matches, same distance in
both sequences

Example (andi)

S1 . . . G G A C A T A C C C C A . . .
S2 . . . G G A C A G A C T C C A . . .

Consider nucleotides between word matches to estimate distances
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Difficulty:

Only homologous matches can be used to estimate phylogenetic
distances

⇒ Co-phylog and andi use word matches of sufficient length to
exclude random similarities.

But: O(n) homologue matches, O(n2) background matches.

⇒ long word matches necessary if long sequences compared
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(3) FSWM:
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S1 A T C A G G A C A T A C G C C A T
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Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 . . . A C A T A C G C . . .
S2 . . . A C A T G C T C . . .

1 1 0 1 0 0 0 1



Filtered Spaced-Word Matches

(3) FSWM:
Search for spaced-word matches w.r.t. given pattern P

Example (FSWM, P = 11010001)

S1 . . . A C A T A C G C . . .
S2 . . . A C A T G C T C . . .

1 1 0 1 0 0 0 1

Consider nucleotides at don’t-care positions to estimate distances
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Example (Find spaced-word matches by sorting, P = 1101)

S1 C A C A G A C
S2 C A G A C A G A
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Filtered Spaced-Word Matches

Default parameters in FSWM:

Weight w = 12

100 don’t-care positions

⇒ Sensitive, but many random background matches

Example (Homologous and background SW matches)
Indel-free sequences of length 5 Mb, match probability 0.8:

≈ 3.43 · 105 homologous spaced-word matches
≈ 1.56 · 106 background spaced-word matches
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Remove low-scoring spaced-word matches

To filter out random background spaced-word matches:

Use nucleotide substitution matrix
(Chiaromonte et al., 2002)

Calculate score for each spaced-word match:
Sum of substitution scores at don’t-care positions

Discard spaced-word matches with score below threshold
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Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
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A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1



Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1

Nucleotides at don’t-care positions



Remove low-scoring spaced-word matches

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

Example (Score of spaced-word match, P = 1100101)

S1 : G C T G T A T A C G T C
S2 : G T A C A C T T A T
P : 1 1 0 0 1 0 1

Score = -31 + 91 -114 = -54



Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)
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Remove low-scoring spaced-word matches

To remove background noise:

Remove spaced words with score below T .

Default value T = 0

To visualize distribution of spaced-word matches: plot number of
spaced word matches against scores
(‘Spaced-word histogram’)



Spaced-word histograms

Figure : i.i.d sequences, 0.1 subst. per site, indel-free, 5 Mb



Spaced-word histograms

Figure : i.i.d sequences, 0.3 subst. per site, indel-free, 5 Mb



Spaced-word histograms

Figure : Sagittula stellata E37 vs Rhodobacterales bacterium HTCC2255.



Spaced-word histograms

Figure : Octadecabacter arcticus 238 vs Octadecabacter antarticus 307.



Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances



Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances



Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances



Program Evaluation

Generate pairs of semi-artificial genome sequences:

E. coli K12 as ‘ancestral’ genome

Generate substitutions and indels for pairs of ‘descendent’
genomes – between 0 and 1 substitutions per position

Compare estimated distances to ‘real’ distances



Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d 

di
st

an
ce

s

Substitutions per position

CO−phylog
expected

Co-phylog



Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d 

di
st

an
ce

s

Substitutions per position

andi
expected

andi



Program Evaluation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
st

ia
m

te
d 

di
st

an
ce

s

Substitutions per position

filtered spaced word matches
expected

FSWM



Program Evaluation

Generate 35 sets of 50 simulated genomes along random tree
with ALF
(225-463 Mb per data set; ≤ 0.4 substitutions per position)

Estimate distances with Co-phylog, andi and FSWM, calculate
trees with Neighbour Joining

Calculate sum of Robinson-Foulds distances

Total sum of RF distances:

Co-phylog 446
andi 470
FSWM 424
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Program Evaluation

Real-world benchmark data: 14 plant genomes (Brassicales)

Total size 4.8 Gb, up to 0.63 substitutions per site.

No reasonable results with andi, distance too large
Co-phylog did not finish
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Figure : A: Reference tree (protein MSA, Likelihood), B: andi, C-E: FSWM
with weight w = 12,13,14.
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Filtered Spaced-Word Matches

Ongoing project: Filtered Spaced Word Matches for protein sequences
(Jendrik Schellhorn)

Chris

Jendrik
Eisen

Svenja Schöbel, Jendrik Schellhorn



Spaced Anchors

New project: Use filtered spaced word matches as anchor points for
genome alignment

Manuscript uploaded to arXiv, submitted to OUP Bioinformatics



Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C T C G T
S2 C A C G A T G A T C G

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points
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Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G G T C − T C G T
S2 C − − A C G A T G A T C G −

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points



Spaced Anchors

Example (Anchored pairwise alignment)

S1 A G C A C G − − G T C T C G T
S2 − − C A C G A T G A − T C G −

Find chain of anchor points (e.g. word matches)

Align anchor points

Align segments between anchor points



Spaced Anchors

Program evaluation: use spaced anchors in Mugsy instead of
MUMmer (exact word matches).
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Therefore:

FSWM greedily selects one-to-one spaced-word matching
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Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA
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Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Spaced word G ∗ ∗TA , 3 times in S1 , 2 times in S2
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A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91
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Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⇒ 6 spaced-word matches involving G ∗ ∗TA

aligned score
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(1,9) GG AA 191

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
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S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T
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Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

For one-to-one mapping: sort spaced-word matches . . .
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Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
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. . . use greedy algorithm
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Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. . . use greedy algorithm

aligned score
(6,2) GG GG 200 X
(1,9) GG AA 191 X
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
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Remove ambiguous spaced-word matches

Example (P = 10011)

S1 : G G A T A G G G T A T A T T A
S2 : A G G G T A A C G G A T A T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Result: two spaced-word matches involving G ∗ ∗TA accepted

aligned score
(6,2) GG GG 200 X
(1,9) GG AA 191 X
(1,2) GG AG 69
(6,9) GG GA 69

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91
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Two different approaches to alignment-free sequence comparison:

Use words of length k or ‘spaced words’ with fixed underlying
patterns P

Calculate average length of common substrings

Advantage of longest-substring methods: get rid of parameter k !
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To compare sequences S1 and S2:

For each i in S1, calculate longest substring starting at i matching a
substring in S2.

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A T A A
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How to find longest substring in S2 that matches substring starting at
position i in S1?

Use generalized suffix trees!



Average Common Substring (ACS)

D. Gusfield, Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology
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Example (Suffix tree)

Suffix tree for S = xabxac (D. Gusfield)



Average Common Substring (ACS)

Example (Generalized suffix tree)

Generalized suffix tree for strings S1 = xabxa and S2 = babxba
(D. Gusfield)



Average Common Substring (ACS)

Define distance between sequences S1 and S2:

L(S1,S2) := average length of the longest substring starting
at i in S1, matching a subsequence of S2

d(S1,S2) :=
log(|S2|)
L(S1,S2)

− log(|S1|)
L(S1,S1)

D(S1,S2) :=
d(S1,S2) + d(S2,S1)

2

Note: D(S1,S2) not based on stochastic model of evolution!
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No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees
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Program evaluation:

No direct evaluation of produced distances!

Indirect evaluation:

I For set of sequences, calculate pairwise distances

I Construct tree with Neighbour-Joining

I Compare resulting tree to reference trees



Average Common Substring (ACS)

Figure : ACS tree based on complete mammalian mtDNA



Average Common Substring (ACS)

Figure : ACS tree based on proteomes
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substring of S2 with k mismatches.
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S2 A T G G A G T C A C A T A T T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.
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The kmacs approach

Example (Longest k -mismatch common substring)

S1 T G C A G A C G C A T

S2 T G G A G T C A C A T

Longest string starting at i = 4 in S1 matching a substring of S2 with
k = 3 mismatches, length = 11.
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With suffix trees: O(n2 · k)
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For each position i in Si , find longest substring matching substring
of S2 (like in ACS)

Extend after first mismatch etc. until k + 1th mismatch.
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Example (Heuristic in kmacs, k = 3 )
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For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch
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Example (Heuristic in kmacs, k = 3 )

S1 T G C A G A C G C A T

S2 T G G A G T C A C A T

For position i = 4 in S1

Find longest matching substring in S2

Extend until k + 1-th mismatch
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Note:

Longest match of substring starting at i may not be unique.

Therefore: extend all longest matches to find longest k -mismtch
substring.
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For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension
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The kmacs approach

Example (Longest common substring not unique)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T G A T

For position i = 2 in S1

Several occurrences of longest common substrings in S2

kmacs extends all occurrences, selects longest extension



The kmacs approach

Generalized suffix trees can be used:

To find exact word matches (as in ACS)

To extend matches after mismatch



The kmacs approach

Example (Generalized suffix tree)

Generalized suffix tree for strings S1 = xabxa and S2 = babxba
(D. Gusfield, p. 117)



The kmacs approach

Time complexity for finding maximal exact matches:

O(n · z)

z = average number of maximal matches to a substring in S2 starting
at a position i in S1.

Time complexity for finding and extending maximal exact matches:

O(n · z · k)
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The kmacs approach

Time complexity for finding maximal exact matches:

O(n · z)

z = average number of maximal matches to a substring in S2 starting
at a position i in S1.

Time complexity for finding and extending maximal exact matches:

O(n · z · k)



The kmacs approach

Implementation: Use enhanced suffix arrays instead of suffix trees
(software by Kärkkäinen and Sanders (2003) MPI Saarbrücken)

Figure : Generalized enhanced suffix array for strings banana and ananas



The kmacs approach

As in Ulitsky et al. (2006): define distance between S1 and S2:

L(S1,S2) := average length of k -mismatch longest substrings

d(S1,S2) :=
log(|S2|)
L(S1,S2)

− log(|S1|)
L(S1,S1)

D(S1,S2) :=
d(S1,S2) + d(S2,S1)

2



Program Evaluation

Figure : Mitochondrial DNA sequences (Haubold et al.) (a) ACS, (b) tree
calculated with Kr (Haubold et al.), (c) kmax, k = 70, (d) reference tree.
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Figure : Mitochondrial DNA sequences (Haubold et al.) (a) ACS, (b) tree
calculated with Kr (Haubold et al.), (c) kmax, k = 70, (d) reference tree.



Program Evaluation

Figure : Simulated DNA sequences (using ROSE). Average RF distances for
20 sequence sets with 50 sequences of length 16,000 each. ROSE
‘relatednes’ = 70
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Figure : Results on BAliBASE (sum of RF distances over 218 Sequence sets)

.
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Figure : Simulated protein sequences (using ROSE). Average values for 20
sequence sets with 125 sequences of length 300 each. ROSE ‘relatednes’ =
480



Program Evaluation

Method runtime (s)
Clustal W 1,817
Clustal Ω 1,039
spaced words, 1 pattern, k = 8 0.3
spaced words, 100 patterns, k = 8 27.6
ACS 2.8
Kr 0.9
CVTree 0.5
kmacs, k = 10 7.6
kmacs, k = 50 21.4

Program runtime on 50 simulated DNA sequences of length 16,000.



Program Evaluation

Seq. length k runtime (s)
100 kb 0 0.04
100 kb 50 0.12
100 kb 100 0.29

1 mb 0 0.19
1 mb 50 1.15
1 mb 100 2.00

10 mb 0 3.11
10 mb 50 13.47
10 mb 100 22.01

Program runtime on pairs of simulated DNA sequences.



Kr (‘shustring’ approach)

First alignment-free approach to estimate number of substitutions per
sequence position!
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To compare S1 and S2:

For each i in S1, calculate longest unique substring (‘shustring’)
starting at i (equivalent to finding longest common substring)

Example (ACS)

S1 C A T T G G A G T C G T A

S2 A T G G A G T C A A T A

For position i = 4 in S1
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To estimate number d of substitutions per position:

Calculate expected shustring length as function of mismatch rate p

Moment-based approach: substitute expected shustring length by
empirical average shustring length to calculate p

Calculate d from p using Jukes-Cantor formula
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Define random variables:

Xi,j = length of longest exact match at i and j, resp.
Xi = max1≤j≤L Xi,j

→ calculate P(Xi = m) and E(Xi)



Kr (‘shustring’ approach)

Definition

Define random variables:

Xi,j = length of longest exact match at i and j, resp.
Xi = max1≤j≤L Xi,j

→ calculate P(Xi = m) and E(Xi)



Kr (‘shustring’ approach)

Results: precise estimation of distances up to ∼ 0.5 substitutions per
position



The length of k -mismatch common substrings



The length of k -mismatch common substrings

Alg. Mol. Biol. 12, 27



The length of k -mismatch common substrings

Generalize idea from Haubold et al. (2009) for same model of
evolution. Goal: estimate match probability p.

Definition (Length of k -mismatch common substrings)

Define random variables:

X (k)
i,j = length of longest k-mismatch common substring at i , j

X (k)
i = max1≤j≤L X (k)

i,j
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Generalize idea from Haubold et al. (2009) for same model of
evolution. Goal: estimate match probability p.

Definition (Length of k -mismatch common substrings)

Define random variables:

X (k)
i,j = length of longest k-mismatch common substring at i , j

X (k)
i = max1≤j≤L X (k)

i,j



The length of k -mismatch common substrings

Remark (Length distribution of X (k)
i,j )

P
(

X (k)
i,j = m

)
=


(m

k

)
pm−k (1− p)k+1 if i = j(m

k

)
qm−k (1− q)k+1 else

(1)

‘Negative binomial’ distribution.
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Example (Negative binomial distribution)

Negative binomial distribution for varying values of p (Wikipedia)



The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 C A T T G C A G A C G C A T C

S2 A T G G A G T C A C A T A T T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension
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The length of k -mismatch common substrings

Idea: find longest exact match starting at position i in S1, consider
length of extension with k mismatches (as in kmacs heuristics)

Example (k -mismatch extension of longest exact match)

S1 A G A C G C A T

S2 A G T C A C A T

For position i = 4 in S1, k = 3

Find longest matching substring in S2

Extend until k + 1-th mismatch

Consider only length of extension



The length of k -mismatch common substrings

Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match
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Definition

1 Ph = probablitiy that longest exact match is ‘homologue’, i.e.
matches at same position (in indel-free model)

2 Pb = probability that longest exact match is not ‘homologue’

3 X̂ (k)
i = length of k-mismatch extension at position i in kmacs

heuristics (running with k + 1) after longest exact match
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Then, with (1), we obtain

Theorem (Length distribution of k -mismatch extension)

P
(

X̂ (k)
i = m

)
= Ph ·

(
m
k

)
pm−k (1− p)k+1

+ Pb ·
(

m
k

)
qm−k (1− q)k+1
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The length of k -mismatch common substrings

Corollary

1 The distribution of X̂ (k)
i is the sum of two negative binomials

(‘homolgous’ and ‘background’) with maxima at⌈
k

1− p
− 1
⌉

and
⌈

k
1− q

− 1
⌉

2 If p and k are large enough, X̂ (k)
i is bimodal, and we can estimate

p̂ =
mE + 1− k

mE + 1
(2)

with mE location of empirical ‘homologous’ peak.
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Evaluation on 27 mitochondrial genomes from primates
(Robinson-Foulds distance)
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Evaluation on 27 mitochondrial genomes from primates
(branch score distance)
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Ongoing / future projects:

Better ways of finding second peak in length distribution

Dealing with insertions and deletions

Optimal parameters (k , smoothing window)

Systematic applications to genome data
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